A Semiparametric Approach for the Covariate Specific Roc Curve with Survival Outcome
نویسندگان
چکیده
Abstract: The receiver operating characteristic (ROC) curve has been extended to survival data recently, including the nonparametric approach by Heagerty, Lumley and Pepe (2000) and the semiparametric approach by Heagerty and Zheng (2005) using standard survival analysis techniques based on two different time-dependent ROC curve definitions. However, both approaches do not involve covariates other than the biomarker and cannot be used to estimate the ROC curve adjusted for covariates. To account for the covariate effect, we propose a joint model approach which assumes that the hazard of failure depends on the biomarker and the covariates through a proportional hazards model and that the biomarker depends the covariates through a semiparametric location model. We propose semiparametric estimators for covariate-specific ROC curves corresponding to the two timedependent ROC curve definitions, respectively. We show that the estimators are consistent and converge to Gaussian processes. In the case of no covariates, the estimators are demonstrated to be more efficient than the Heagerty-Lumley-Pepe estimator and the Heagerty-Zheng estimator via simulation studies. In addition, the estimators can be easily extended to other survival models. We apply these estimators to an HIV dataset.
منابع مشابه
Bayesian semiparametric estimation of covariate-dependent ROC curves.
Receiver operating characteristic (ROC) curves are widely used to measure the discriminating power of medical tests and other classification procedures. In many practical applications, the performance of these procedures can depend on covariates such as age, naturally leading to a collection of curves associated with different covariate levels. This paper develops a Bayesian heteroscedastic sem...
متن کاملSemiparametric estimation of the covariate-specific ROC curve in presence of ignorable verification bias.
Covariate-specific receiver operating characteristic (ROC) curves are often used to evaluate the classification accuracy of a medical diagnostic test or a biomarker, when the accuracy of the test is associated with certain covariates. In many large-scale screening tests, the gold standard is subject to missingness due to high cost or harmfulness to the patient. In this article, we propose a sem...
متن کاملExtending induced ROC methodology to the functional context.
The receiver operating characteristic (ROC) curve is the most widely used measure for evaluating the discriminatory performance of a continuous marker. Often, covariate information is also available and several regression methods have been proposed to incorporate covariate information in the ROC framework. Until now, these methods are only developed for the case where the covariate is univariat...
متن کاملEstimation of covariate-specific time-dependent ROC curves in the presence of missing biomarkers.
Covariate-specific time-dependent ROC curves are often used to evaluate the diagnostic accuracy of a biomarker with time-to-event outcomes, when certain covariates have an impact on the test accuracy. In many medical studies, measurements of biomarkers are subject to missingness due to high cost or limitation of technology. This article considers estimation of covariate-specific time-dependent ...
متن کاملSemiparametric estimation of time-dependent ROC curves for longitudinal marker data.
One approach to evaluating the strength of association between a longitudinal marker process and a key clinical event time is through predictive regression methods such as a time-dependent covariate hazard model. For example, a Cox model with time-varying covariates specifies the instantaneous risk of the event as a function of the time-varying marker and additional covariates. In this manuscri...
متن کامل